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Abstract. The general expression for the local matrig) of a quantum chain with the

site space in any representation of su(3) is obtained. This is made by generalizing

from the fundamental representation and imposing the fulfilment of the Yang—Baxter equation.
Then, a non-homogeneous spin chain combining different representations of su(3) is solved by
developing a method inspired in the nested Bethe ansatz. The solution for the eigenvalues of
the trace of the monodromy matrix is given as two coupled Bethe equations. A conjecture about
the solution of a chain with the site states in different representations of isugresented. The
thermodynamic limit of the ground state is calculated.

1. Introduction

The search for integrable spin chains has gained considerable attention recently due to the
fact that they are interesting physical systems and have a rich mathematical structure. The
best known is theX X Z Heisenberg su(2) chain with spifi= % in every site [1], which

gave rise to the subsequent development of the quantum groups [2—4]. Integrable spin chains
with § = 1 and higher spin chains have been found and solved [5-11]. They correspond
to higher dimension representations of the quantum group that give integrable systems of
increasing complexity [12—14].

In addition, magnetic Hamiltonians can be derived from the solution of the Yang—
Baxter equations (YBE) [15, 16] associated with Lie algebras other than su(2) [17]. The
solutions are found using the Bethe ansatz (BA) for sites with two components or nested
Bethe ansatz (NBA) for sites with more components [18]. The introduction of the quantum
inverse scattering methods (QISM) [19] gave a systematic method to solve those systems.
The quantum groups give general methods to find new integrable models.

An interesting problem is to solve integrable chains formed by two kinds of states of the
site. Inhomogeneus solvable models were considered in [20] (see also [12]). The simplest
case, an alternating chain with= % and S = 1 derived from the su(2) Lie algebra was
presented in [21] and in several subsequent works in which the thermodynamic properties
of these systems were studied [22—-25].

The system presents interesting features; one of them is that it gives a Hamiltonian that
contains the usual piece coupling pairs of neighbouring s@iﬁs% and S = 1 and another
piece coupling three neighbouring spins. The solution is found using the BA.

In this paper, we are going to solve an alternating chain with the spin of the sites in the
{3} and{3*} representations of su(3). We made an extension of the method used in [21] for
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systems where th® and 7 symmetries are not conserved in order to obtain Hamiltonians
associated to alternating chains based on the su(2) algebra.

In a more rigorous sense, we are using thgsu3)) algebra and its representations,
but it can be shown that generally for simple algelyake representations gfand U, (g)
are isomorphic [26].

We can obtain two different systems by using as auxiliary spaces the represen{itions
and{3*}; they will give different Hamiltonians, but under a relation between the parameters
of the local inhomogeneities that we will specified, we can prove that they commute and both
systems have the same eigenstates. Then, the more general system will be a superposition
of those two systems.

The diagonalization of these Hamiltonians requires important modifications of the
standard method with the NBA [17,20]. We start by building the monodromy matrix
in the auxiliary space whose elements are operators in the space of states of the chain. The
main difference is that, in these new systems, we do not have a common eigenstate of the
operators in the diagonal of the monodromy matrix which is annihilated by all operators
below the diagonal of this matrix. Then, we introduce a reference subspace in the space
of states where we can do the second step of the NBA. So, we obtain the equations of
the ansatz whose properties can be analysed as in the standard case. The model, since the
auxiliary space has three dimensions, requires only two steps for the NBA, but the method
is easily generalizable to more dimensions [27].

This paper is organized as follows. In section 2 we develop a technique to obtain the
Hamiltonians associated to alternating chains [21]. In section 3 we apply the method to
alternating chains with the sites in th&} and{3*} representations of su(3). In section 4 we
find the eigenvalues of transfer matrix of the system and the equations of our ansatz as a
generalization of the NBA. In section 5, we analyse the equations of the ansatz and obtain
their thermodynamic limit.

2. Non-homogeneous chain with the site states alternating in two different
representation spaces

As is well known, regular solutions of the YBE systematically yield integrable
chains. In [21] an integrable quantum chain with two types of spins is described.
Following [21] and in order to establish our notation, we are going to review how
an integrable system follows from &-matrix R2¢(9), which is a solution of the
YBE

[1® RO —0)I[RO) ®1[1® RO)] =[RE) ®1[1® RO]IRO —6) ®1]. (2.1)
We associate to each site of the chain theperator
[t0.6(@)]c.a = RS (©) (2.2)

where the indices: and b act on the site space and theand d in an auxiliary space.
They are shown graphically in figured)( Then the YBE can be written in the usual
form,

RO —0)-[t@®) @t@)] =[t(©) ®t(©O)] RO —0) (2.3)

that is graphically expressed in figurea( The ® product is in the site space and the
product is in the auxiliary space.

Equation (2.1) is not the most general YBE. In general we have operators acting on
pairs of unequal vector spaces. This is represented graphically with lines of different kinds.
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We are going to consider two vector spaces denotesl &ydo; then we have, besides
the operators* = R*,  and7 represented in figure 1. They fulfil the YBEs,

RO —0)-["@) @1 @) =[t"©) @) - R*(6 — 0) (2.48)
R*O—0)-[T0) @70 =[i(0)®1O)] - R*(O — 6" (2.40)
RO -0 -[1(0)®1(©)] =[1(0) ®1(0)] - R(O —0') (2.4c)

represented in figures I2-(d) respectively.
In the most general case, we do not requii@) and R*(0) to haveP andT symmetry
nor to be invariant under crossing. Instead, we will assume the following properties.
(i) PT-symmetry,

RS (9) = RE4(9) (2.50)

R*50) = R*50). (2.5)
(i) Unitarity,

REGOIRES (—0) = p(0)8a.e8y. s (2.69)

RLLOIR™Y (—6) = " (08350 (2.60)

(iii) Regularity,

R(0) = col. (2.7)
(iv) A matrix M exists such that

RS (O)My o REG(—0 — 2) Myt o 84,45 (2.8)
(v) The r-matrices verify,

[ta.6(O)]a.plt5., (=D]p.c = (084,004, (2.9)

We consider a non-homogeneous chain withi 2ites in which the site spaces are
alternating in the representatiof®3} and{3*}. This chain has associated the operator

TGO, 0) = 1D @72, @ +a)...12V0 @)V @ +a) (2.10)

a,ay ai,az T aan-2,a2n-1 azN-1,b

which is a matrix in the auxiliary space called monodromy matrix, since it describes the
transportation along the chain. The elements of this matrix are operators on the space tensor
product of the site spaces. It is graphically represented in figure 3.

Since ther and7 matrices fulfil (2.3),7@? also verifies the YBE

RO —0H[T ) @ T@ )] = [T ) @ TAO)]R®O —0). (2.11)
Following the standard procedure, we take the transfer matrices
@@, 0) = T, a) (2.12)
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which are the trace of the monodromy matrices. Due to (2.11), the operators corresponding
to different values of the argumeétcommute,

[2@ (9, o), 7@ (0’ @)] = 0. (2.13)

The successive derivatives of the transfer matrix at 0 give us a family of commuting
operators that describe a solvable system, the Hamiltonian of that system being the first
derivative,

H = %In @@, a)|g—o. (2.14)

In a homogeneous chain the Hamiltonian is a sum of nearest-neighbour interactions
terms (two-site operators). In our case, it is very different due to inhomogeneities and
there are also next-to-nearest-neighbour interaction terms (three-site operators). Collecting
separately the two kinds of terms, the Hamiltonian becomes

H— RIS S A 2.15
I(")’(a) ; l,l+l+ Coﬁ(a) ; i,i+1,i+2 ( )
i=odd i=odd
with
(hi7sDapivy = lac(@)]palls, (=e)]es (2.16)
and
(h§§)+1,i+2)a,ﬂ,c;b,y,d - [fa,e(a)]ﬁ,é[ie.d(o)]c,f[fé,y(_a)]f,h (217)

that are graphically expressed in figurea)4énd ) respectively.
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A similar process can be made by using as auxiliary space thee. Thus, we define
the new monodromy matrix
150, 0) =15, 0 + 02,0 ... i 0 @+ ©)  (2.18)
graphically represented in figure 5. It fulfills the YBE
R* O —ONTAO —0)TA® —0)] =[T™O —0) @ T (6 — 0)]R*(O — 0.
(2.19)
The Hamiltonian obtained from this monodromy matrix using a formula similar to (2.12)

is

-1 o 1 & e

H=-— hi hi 2.20

/5(0') 122: IJ+1+C(),5(U) ,Zz: 0L,i+1,i+2 ( )
i=€ven i=€ven

with

(ﬁ;,];')+1)a,a;/3,b = [;(x,ﬁ (J)]a,c[fc,b(_a)]ﬁ.ﬁ (221)
and

R, 1 Daanipin = s @ aclis O plies (=) g (2.22)

The monodromy matrices @Y and 7@ fulfil the following YBE
[fas (@ — 0+ P]ap Ty 0. TS O, —)
=T, T 0. V)a.c® =0+ y)]us (2.23)

that is graphically expressed in figure 6.
As a consequence of (2.23) the transfer matric@8 and 7@? commute

['L’(alt)(e, O{), :L:(a|t) (9/’ —Ol)] =0 (224)

and then, the derived Hamiltoniand and H also commute. Thus, both can be
simultaneously diagonalized with common eigenstates.
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3. Quantum chain with the site states alternating in two representations of su(3)

In this section we describe a non-homogeneous chain that we form by alternating two
representations of su(3). We denote a representation by the indices of its associated Dynkin
diagram(my, m2). The vector space is taken as the representati¢h 0) = {3} and the
spaceo is the generic representatigmy, my).

Ther operator acting on the site and auxiliary spaces, bottan be written [27]

%(A‘Sq—N“ _ )\‘—3qN”‘) )\(‘]712—4) fl —1(¢7* ‘I)[fz, fl]
—1_ 1,
10, y) = A1l -9 ) 2, %(Asquvﬁ _ )Lfaqzvﬁ) 2l ) ) fo (3.1)
1 -1_ _
)\(‘1 ‘1)[617 62] A—l(q . q)82 %()\.Sq NY - 3qNV)

where the parametedsandq have been taken as the functionsfoéind y

=6t g=e” (32)
and theN-matrices are

N = 3hy+ ha+ 31 (3.3)

NP = —Lhy+ Thp+ 11 (3.3)

N” = —1hy—2hp+ 11 (3.%)

wheref{e;, fi, g™}, i = 1,2, are the Cartan generators of the deformed algebral(3)).
To obtain the operatorgd, y), we take (3.1) as a basis and write

1 1

%(}L3q—N”’ _ )L—BqN") )L(tfz—q) F1 )L—l((fz—fi) F3
) = )Lfl(qflzfq) Eq %(kzquvﬂ =3, N )L(qflzfq) £ (3.4)
1t 1
)\(‘1 > q) Es3 )Lfl(f[ 5 q)Ez %(quiNy -3 NV)

where the operator§E;, F;}, i = 1, 3, are unknown and will be determined by imposing
the YBE,

RO —0,y)-[10, 1) @1, »]=1[t©,y)®10,y)]- RO -0, 7) (3.5)
that is shown in figure 2(). The Rcb’-j(e) = [t..5(6, ¥)]c.qa IS given by
a 00 OO O OO 0\
0d4d 0bpb 0 0 O OO
0O Oc OO Ob» 0O
0Ob 0O ¢c OO O OO
ROLw)=|0 0 0 0a 0 0 0 O (3.6)
0O OO0 O0Od O b O
0O Opb 00O O4d4 00O
0O 000 O0Ob O ¢ O
0O 0 0OO O OO0 Oua
with
au, ) = W33t —173u%) (3.79)
bk, ) = 30°p7% =27 (3.70)
e =gt —gaut (3.7c)

dOu ) = 3@ = @1 h (3.7d)
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The relations obtained are

Eiq" =q ¢V E; (3.89)
Equﬁ = quﬂEl (3.80)
Fig" = qq"" Py (3.8)
Fig"" = q7'¢"" By (3.8d)
Exq"" =qq"" E, (3.8)
Exq"' =q7'¢""E; (3.80)
Foq" =q "' F, (3.80)
ngNﬂ = quﬂFz (3.8n)
[Er Fil = (g7t = )@V~ — ¢V (3.8)
(@ N — gV (3.8)
k3= %quﬂ[El, E5] (3.8K)
(¢ —q)
F3= %qNﬁ[Fz, F] (3.8)
(¢g*—q)

and besides, the modified Serre relations

g E1E1Ey — (q + q YE1E2E1 + gE2E1E; =0 (3.%)
qE2E2E1 — (q + q DE2E1Ex + q 'E1E2E; =0 (3.%)
q 'FiF1F, — (g + ¢ YF1F2FL 4 g F,FiF1 =0 (3.%)
qF2F2F1— (g +q YF2FiFa+q FiFF, =0 (3.9)

should be verified. It must be noted that relations {3-83.8) are the usual ones for the
quantum groug/, (sl(3)) while relations (3.8)—(3.2/) are not the usual ones for the stated
group, and because of this, the YBE is not verified if the generatoand f;, pertaining

to the deformed algebra, are takenmsand F;. This induces us to take

Fi=3G " =9Zf; (3.10r)
E; = %(q_l — q)eizi_l i=12 (3.1)
wheree; and f;, i = 1, 2, are the generators of, (sl(3)) in the representatioqn, m») and

Z; are two diagonal operators that were obtain by imposing the verification of the relations
(3.82)—(3.9) and (3.2)—(3.2/). In this way, one obtains the general form of these operators
given by

Z; = g shatal (3.11a)
Z2 — q%h1+(al+%)hz+b31. (31]b)
The knowledge of the operatar permits us to build the monodromy operator of any

multistate chain that mixes two representations. As an example, for the chain that mixes
the {3} and the(my, m») representations the monodromy operator is

TS ©) = 1) )72

a,ay ap,a

L0) .12V (02N () (3.12)

Aa2N-2,d2N -1 AanN-1b

that is represented graphically as shown in figure 3.
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4. Bethe ansatz equations of the models with space sites in different representations
of su(3)

In this section we are going to solve an alternating chain that mixeq3hand {3*}
representations of su(3) and the results will be generalized to chains that mix two arbitrary
representations.

In this case, the operator is given by (3.1) that can be written in matrix form
a 00 OO O OO O\
0 b 0c¢c 0O0O0OTD O
0 0Obh 00 O0d OO
04d 0b 0O 0O O OO
1(=]10 0 0 0a 0 0 0 O (4.1)
0O OO0 O O0Ob O ¢ O
0 0Oc 00 O0H 0O
0 00 0O0d O0©boO
0 00O O0OOOUO O0ua
with
a(®) =sinh(36 + y) (4.22)
b(©9) = sinh(36) (4.20)
¢(0) = sinh(y)e? (4.20)
d(0) = sinh(y)ez . (4.2d)

In the same way; is obtained from (3.4) by taking in (3.2] (3.1®) the generators
of su(3) in the{3*} representation,

0 0O 0O 0 O
€1=<—1 0 0) e2=<0 0 O)
0O 0 O 0 -1 0

0 -1 0 0 0 O (4-3)
flz(o 0 0) f2=<0 0 —1).
0O 0 O 0 0 O
Besides, we must fix in (3.1), (3.11) the values ofi1, az andbz. By taking
a1 =} az =0 b3=0 (4.4)
and rescaling by
0=0+73y (4.5)
we find
a 00 0c¢ 0O00O d
0O» 00O0OOO0ODO
0 0b O0O0OOOOO
0O 00b» 0 O0O0O0O
t(@)=|d 0 0 0a 0 0 O ¢ (4.6)
0 00O0O0OHKOODO
0 00O0O0OOHL OO
0 000O0OOHLO
¢ 00 0d O O O0a
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with
_ .. 3 y
a®) = smh(ée + 5) (4.7a)
b(©®) = sinh(3(0 + y)) (4.70)
&(0) = —sinh(y)e"?” (4.70)
d(6) = —sinh(y)e 7" . (4.7d)
As we take thg3*} representation as auxiliary space, thanatrix is
a 00 00O O OPO O\
04 0b 00 O OO0
0 0c OO0OO0OOHL OO
0O b 0c¢c 00 O0O0DO
RO®)=]0 0 0 0a O O O O (4.8)
0 000 O0Od O0©b O
0 0b OO0 Od OO
0 00OO0DO0ODHL O O
0 00O OO O Oua

and in this case the matri defined in (2.8) is the identity and the functions defined in
equations (2.&), (2.6v) and (2.7) are

p(0) = p*(®) = sinh(y — 30) sinh(y + 36) (4.9)

¢o = ¢ = sinhy (4.%)

£(6) = 3 (cosh(3y) — cosh(30)). (4.90)
We group two neighbour sites in the chain and form the operator

156, 0) =19 OO + ) i odd (4.10)

The monodromy matrix that corresponds to this model
T30, 0) = 1220, )iCH 0, ) ... (2229, a). (4.11)

a,ay A2N-1,b

This operator can be written in the auxiliary space as a matrix

A0,a) B0,) Bs(0,a)
720, @) = (czw, @) D0, ) Da3(®, a)) (4.12)
C3(0,) D3200,a) D33(0,a)
whose elements are operators in the tensorial product of the site spaces,
S= () siit1 (4.13)

i=odd
s;.i+1 being the tensorial product of site spagésand (i + 1) and isomorphic to thg3}
and {3*} representation product
Siiv1 =8 @ siy1 ~ {3} ® {37} (4.14)
The YBE for 7@Y can be written in terms of its components
B(O)® B(') = R?©® —0')- (B() ® B(9)) = (B() ® B(9)) - R? 6 —0) (4.15)
A@O)B©) =g —0)BO)A®) — BOIA®') -FP O —0) (4.1%)
D6) ® B(O') = g0 —6)(B(w) ® D®)) - R? (0 —0') — BO) @ r®(0 - 0') - D(©®")
(4.15%)



Integrable su(3) spin chain combining different representations 5897

where
1 0 O
0 ¢ b 9o ho 0 hy O
@9y — a a @9y — =2y — [ M+
R(9)—OZ§O r'9) (Oh) r(@)_<0 h)
0O 0 0 1
(4.16)
and
“Or =W ) (4.17)

8(9)2@ +()=@ —()—%.

For the site states, we use the notation

I I
- () ()

In order to find the eigenvectors and eigenvalues of
7@ (0) = A) + D22(0) + D33(6) (4.19)

we find inspiration in the NBA method and look for an eigenstatedathat serves as a
pseudovacuum. For this purpose, we build the subspasg;ef, generated by the vectors
lu, 5) and|u, d), that we callw;, and then the subspace

QL=w W3R - Qwy (4.20)
of the total space of states of a chain witN Bites.
In a non-homogeneous chain, we do not have a $tatesuch that
(4.21)

D; ;llv) o< 8; jllv).
For this reason, the NBA method cannot be used. Our method, instead, starts with a state
|1) € Q verifying

A@)11) = [a@)]™[b©)]": 1|12) (4.22)
Bi||1) #0 i=23 (4.2D)
Ci|l1) =0 i=273 (4.22)
D;;lll) € Q i,j=273 (4.22)

N3 (N3) being the number of sites in the representafi®n({3*}). In order to simplify the
exposition of our method, we také; = N = N.
Following the steps inspired in the NBA, we applitimes theB operators td|1) and
build the state
Wp) =W(ua, ..., 0n) = Biy(na) ... Bi, () Xiy,. i, I11) = B(p1) ® - - @ B(ur) X||1)
(4.23)

X;,..., being ar-tensor that, together with the values of the spectral parameters. , u,,
will be determined at the end.

The action ofA(x) and D; ; () on W is found by pushing them to the right through the
B; (1;)'s using the commutations rules (44)5(4.1%). Two types of terms arise whe
andD; ; pass througlB’s: the wanted and unwanted terms, similar to obtained in the NBA



5898 J Abad and M Rjs

method. The first one comes from the first terms of (8)1%4.1%). In this type of terms
the A or D, ; and theB’s keep their original arguments and give a state proportiondl.to
The terms coming from the second terms in (4)1%4.1%) are called unwanted since they
contain B; (1) and so they never give a state proportionaltpso, they must cancel each
other out when we sum the trace Bf'. The wanted term obtained by application Afis

[aGoI™[Bw]™ | [ ey — ) Bi (1) - .. Bi, () Xiy, i, I11) (4.24)
j=1

and thekth unwanted term

— [a(ol™ bl T | ey — ) (B@F® (u — 1)) ® B(ixr1) ® -+ - ® Bluy)

j=1
J#k
®B(11) ® Bu-)M* VX1 (4.25)
M being the operator arising by repeated application of ¢),15
B(u1) ® -+ ® B(iy) = B(tip1) ® -+ B(iy) ® B(ua) -+ ® B )M * Y. (4.26)

The application of the operatoi3; (1) to the statel () is a little more laborious but
straightforward. The wanted term results

[Dr.j () Biy (1) - . - Bi, () Xiy...i, | D] wanted
= [Te(e =m0 Bi(ua) . B RS (= ) . RZ (1 — )

i=1

X RZIA( — pa) Dyg, X, [12) (4.27)
where theR®@’s product is taken in the auxiliary space and has the form

a(w, p) Bu, u))
. 4.28
YL 8 ) (4.28)
The action ofDy ; with k # j on ||1) is not zero. This is the main difference with the

models that can be solved by NBA. Then, we try to diagonalize the matrix product

A@(u, B@(u,
F(u, p) = D(u) - D(u, p) = <C(2)EZ:7 Z; D(Z)EZ, Z;) . (4.29)

By taking the terms in (4.27) with = j and adding them fok = 2 and 3, we obtain the
wanted term

_ p@ar_1.i, (2)ay,iz @1 _
D(u, /'L)a,-,j = Rj,,a, T Rjz,az ’ R]'Lfll - <

gl — ) By (uy) ... Bi, ()t (1, ) Xiy,.i I11) (4.30)
j=1

where

T (. p) =tr(F) = AP (u, p) + DP (1, ). (4.31)
In the same form, th&th unwanted term results

— T st — ) BGr® (e = ) ® Blpara) ® -+ ® B(uy)
J
®B(11) ® B(uur-1)M* D) (e, ) X|11). (4.32)
The sum of the wanted terms and the cancellation of the unwanted terms give us the relations

T, wWX(1) = Ay, wX|1) (4.33)
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and
Ao 1) = Napj 1V T 80 = He) 4.34
@Gt ) = e bl ™ [ §00 =0 (4.34)
o

We must now diagonalize (4.33).
The state]|1) € © and the tensok;, _; , (i; = 2, 3) lies in a space with"2dimensions,
tensorial product of two-dimensional spaces;, = 1...r, generated by the vectors

e}=<é) e,2=<2> I=1...r (4.35)
l !

Then, the vectox ||1) yields in a spac&® with 2+ dimensions. In this space, we take
the element
ID? =el@es- ®er @ us)1® -+ ® |us)y (4.36)

which is annihilated byC® (i, ). (Note that the operatoks, 8, y ands of (4.28) act on
the first part of||1)® and the operator®; ; on the second part.) The application of the
operatorsA® and D@ gives

AP, W 11)@ = b1 [b(w]"11)? (4.373)
" 1 - *
DO, WIN® =[] ————[aG]™[Bw]" 11, (4.3M)
i1 8 — i)
The important fact is thaF (i, i) verifies the YBE with theR® matrix given in (4.16),
R®(u — p)[F(u, ) @ F(u', )] = [F(W', ) ® F (1, w)]RP (. — 1) (4.38)

which, in a second step, permits us to solve the system. From this equation, we obtain the
commutation rules

AP () - B2 = g/ = wBP ) - AP ) — hy (W — B () - AP ()
(4.3%)
DP () - BP(u) = g(u — )B? () - DP () — hy(u — u)B@ () - DP ().
(4.3D)
In this second step, we build the vector
VAN p) = BP0, p) - BP0y, wIID@. (4.40)
The action ofA@ (A, ) on ¥®@ gives the wanted term
[ [ [ei = BP Gy, ) ... B? O )| 1)P (4.41)
i=1
and thekth unwanted term

s
— hy O = DIBOOI [0 [T 2 — )
pors
xBP (1, w)B® (i1, p) ... B? Q1 w1 1)@ (4.42)
In the same form, the action @@ (1, ) on ¥@ gives the wanted term

. 4 1
[1la]™ [Te =[] =3 B?(, ) ... B?(hy, )| 1) (4.43)
i=1 j=1 J
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and thekth unwanted term

—h- (k= Wb [a (0] ]"[g(xk x)]‘[ﬁB@a 1)
t;ék
BP (i1, p) ... B? O_1, p)111)@. (4.44)

The cancellation of the unwanted terms and the sum of the wanted terms give us the
equations

0w TV S ol —
[?(k")} I1 T o At R T (4.45)
bl 180Gk — ) iy &Gk — i)
i£k
and
A (e 1) = [ ] 80 — molb (¥ la (ol (4.46)

Then, by comparing equations (4.34) and (4.46) and callit® = a(0)/b(0), we
obtain the coupled Bethe equations

i — A
[E(0]Y = ]_[g(kk — ) ]_[ i/\k /\"; (4.473)
l;ék
[g(u1™ = H iiﬁ - Bl ]"[g(xi — ) (4.470)
J
Hé/

and the eigenvalue of the trace Bf

A(w) = [a] ] [ TGy — w + G0l ] T e — w)
j=1 j=1

_ " S s r 1
x [[b(u)]N3 [T —w +la@I™ [ e -2 ]] } (4.48)
i=1 i=1 j=1 gl — uj)

that is the solution to the spectrum of our problem.
The Hamiltonian of the alternating chain can be obtained with (2.16) and (2.17). The
results forn™™ and/® are

@ _ sinhy(1+ 2coshy) &

= Jo A7 2 4.49
i,i+1 2(COSK3)/) _ 1) Z ® i+1 ( )
and
hz(zz)Jrll+2 - Zmal ®At+l®kl+2+zma)‘z ®Il+1®)\’l+2
+k ()\ ®Li11® )»,+2 Melae )‘i+2) + K fiivrive (4.50)

where we have used the Gell-Mann matriéeand A for the {3} and {3*} representations
respectively, being the coefficients,

sinhy (1 + 2 coshy)
2(cosh3y) — 1)
sinhy (=1 + 4 cosi y)
2(cosh3y) — 1)

if £3,8
(4.518)

ifa=3,8
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sinf 5 (1+ 2 coshy)(3+ 2 coshy) if o #3,8

s 2 sinhy (cosh3y) — 1) (4.51b)

sint? 2 (1 + 2 coshy)(3+ coshy + cosh2y)) if o —3.8

2 sinhy (cosh3y) — 1) ’

V3sinlt % (1+ 2 coshy)?

- 4(cosh3y) — 1)
3sintt £ (1+ 2 coshy)

~ sinhy(cosh3y) — 1)

The termf; 11,42 iS

8 .

y sinhy -

SfiitLiv2 = Z dyv.p <COSR (E) - 4614,1),;0) )\ZI‘L ® )‘;')Jrl ® )”f+2
v, p=1

S ~

(4.51)

!/

(4.51d)

8
+ ) (w3a (P @A ® A, — AF ® A% ® 4F))
a=1

+wgo O @ A1 ® Ay — A @ A1 @ ADy)) + vaahi ® A%, ® AT,
+ugohi ® )‘?+l ® )\'?Jrz} + Z()‘is ® )\'i8+l ® )‘1'3+2 + )\[3 by )‘z‘3+1 ® )\'?Jrz

AL @27 ® A%, — AP @ AT ® 7)) (4.52)
where

sinh

ws = 4”(2 2 0 -1 -1 -1 -1 0) (4.53)

3sinh

w8:¥(0 00 -1 -11 1 0 (4.5%)
—sini?

vi=—-2(0 0 0 -1 -1 1 1 0 (4.5%)
Sinﬁ%(z 2 0 -1 -1 -1 -1 0) (4.53)

Vg = — — — _ .

8 2«/3
sink? y

7= 4.53F
73 ( )

du.v., are the totally symmetric structure constants of SU(3), apd, is the totally
antisymmetric tensor.

As a first generalization, we can now apply the method to a chain that mixes the
(1,00 = {3} and (m1, my) representations. In this model we take again theO)
representation as auxiliary space; then we have the gamatrix (4.8) for the YBE.

The highest weight of thémny, m2) representation is
_ 2mq + mo mi1+ 2m»
-3 * 3
wherea; anda, are the simple roots of su(3).

Through (3.2)—(3.%), (3.4), together with the commutation rules of su(3), it is possible
to know the action of elements of thematrix on the highest-weight vector. We obtain

1.10)|An) = a(0)|Ay) (4.5%)
12.2(0)| A1) = b1(0)|An) (4.5%)
123(0)|An) = b2(0)|Ay) (4.5%)

An o (4.54)
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where
a®) = sinh(30 + Gmy + sma+ 3)y) (4.569)
b1(6) = sinh(36 + (—3m1 + 3m2+ 3)¥) (4.560)
ba(0) = sinh(360 + (—3m1 — Fma+ 3)¥). (4.56c)

As before, we group neighbour sites and build the monodromy opefatbat can be
represented by a matrix in the auxiliary space as in (4.12). The two sites space is how

sii+1~ (1, 0) ® (ma, ma). (4.57)

In this space, the subspaae is now generated by the highest weight of tlk 0)
representation and the subspaceyenerated by the states

(AR, fol M)y F2IAR), .. ) (4.58)

where f, is the generator of sl(3) in theny, m2) representation.
We form the subspac® as in (4.20) and built the statfl) € 2 which must satisfy

A@)11) o< 1) (4.5%)
Dii(0)[11) o< ||12) i=23 (4.5%)
Billl)#0  i=23 (4.5%)
Glly=0 i=23 (4.59)
D; 1) € Q i,j=23 i#] (4.5%)

Then, the state¥ (u) analogous to (4.23) are

W) =W, ..., u) = Biy(a) ... Bi (u)Xiy, i 11) = B(ug) ® - - - @ B(u,) X||1).
(4.60)

As the YBE depends on th&-matrix, we have for the new monodromy matrix the
same commutations rules (4d)5(4.1%) as before; then we can repeat the same steps, the
only difference being in the action of the operators of the monodromy matrix on the state
|1). The Bethe equations (BESs) that we obtain in this case are

el [ar(u) = [ 84— 1) Hg(x i) (4.61a)
g(uj
J#k
N g — M)
[g2(A)] ]_[g(kk ) H g(/\k—x) (4.61)
i#k
whereu;, i =1,...,r, and};, j = 1,...,s, are the roots of the ansatz, the functigs
given in (4.17), and
_ a(f)
0) = —— 4,629
81(0) 5:.0) ( )
- bo(0)
22(0) = = (4.6)
SN

The procedure can be generalized to chains that mix non-fundamental representations
(m1, mp) and (m’, m5), irrespective of the number of sites and their distribution in the
representations. For this purpose, it is necessary to build the monodromy matrix following an
analogous process to used before. If we use a broken line for the represeqtgtion’,),
the monodromy matrix'9¢"(0) can be represented graphically as shown in figure 7.
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IR B MDD
R

Figure 7.

By calling N1 and N, the number of sites in the representatigmg, m,) and(m’y, m')
respectively, we find the BE for this general chain

(81 ()M [ga (0] = H g EZ - Hg(x 145) (4.63)
J
Hék
M
(820001 [22000] = H §C — 1)) 1"[ g(kki; (4.63)
i= z;ﬁk

whereg; and g, are given in (4.62)—(4.6%), andg; and g, are the same as the previous
ones with(m1, my) replaced by(m?, m5).

In the light of this, the generalization for the case of mixed chains with more than two
different representations seems simple, although the physical models that they represent will
be less local and the interaction more complex.

Also we can conjecture about the solution of a non-homogeneous chain combining
different representations of s1)( each representation introdudgs— 1) functionsg; similar
to (4.621)—(4.62) (that we call source functions). The BEs are obtained by applying our
modified Bethe ansatz (MBA) witlin — 1) steps, then each solution will have a set of
(n — 1) equations (the same number of dots in its Dynkin diagram). The first member of
the equations will be a product of the respective source functions powered to the number of
sites of each representation and the second a produycfuictions coming from the YBE
similar to (4.63)—(4.63).

5. Thermodynamic limits of solutions and analysis of Bethe equations

In this section we are going to discuss the solutions of {Ble{3*} model given by
equations (4.46) in the limit for very larg&. For that discussion, it is convenient to
set the parametrization of the spectral parameters

3 4

St =i =5 (5.18)
3

Sh = iv® —y (5.1b)

and N = N3 + Nj the length of the chain.
Using such parametrization, Bethe equations @)4{@.4®) can be written

. . N* . .
|:sm(v,§2)+|§)} : rosin@? — v —i%) @ _ @

sin(v; —iy)
St +13) (5.23)
sin(v? —i%) @ (1) +i}) H sin(v® — (2) +iy)

j=1 Sin(vk
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. . N 1 1
|:Sln(v,£l)—l’£)j| : rosin(? — Y —iy) =osin@® — oY —i

sin(w” +i%) i1 sin(® — ;1) +iy) i1 sin@? — v
J#k
In this regime, the roots must be considered in the inte(vat/2, 7/2). Then, we
define the function

%)
i (5.2b)
+i 5)

_osin(y +ie)
¢(x, @) =iln m (5.3)

and taking logarithms in (52—(5.2) we obtain

N3¢< @ )/) Z¢< @ _ (1) V) 24’(”(2)_”;2)’7):2”11:2) 1<k<s

(5.4a)
@ Y @ ¥ @ _ @ Y (€ <k <
Nag (vk, ) Z¢>( ) Z¢>( 2) 271 1<k<r
(5.4b)
where7" and Ik(z) are half-integers.

In the thermodynamic limitv — oo, the roots tend to have continuous distributions.
Unlike what happens in other cases, we cannot distinguish between the roots coming from
the different types of representations, this can be noted by simple inspection of the equations
of the ansatz. Due to that, we define two root densities, one for each level,

1
/) — —
Let it be
1 1
Zny(v) = 27_[|:¢ (U,%) - ﬁg;(p(v_vm V) + — Z‘/’(U_U(Z) )/)] (5.69)
j=

zN;<v>=;[¢(u,g)—jé;¢<v—v y>+N*Z¢( o 2)} (5.60)

The no-holes hypothesis for the fundamental state establishes

P -1P=1  i=12 for all k (5.7)
that implies
1(1)
Zy,(v)) = ;]—3 (5.8)
@ (2)
Zn;(v") = N* : (5.80)

In the thermodynamic limit and for the fundamental state, the derivative of these
functions are

d N

oW = g 2N~ mm(v) (5.9%)
d N

c@ @) = g Zm = N—3pz<v) (5.%)
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Using the approximation

im 3 ) = / NOre (5.10)

N3—oo N3 7

together with (5.9)—(5.%) and (5.&)—(5.6), we obtain the system of equations

1[N 2
PO = Z.n[qub’ (-7)- f 90— 1, ¥)pa(p1) ot

N / (D) ot du} (5.11a)

1[N; 2
p2(i) = Zn[}\f’df (%) - / ¢/0- = 1, y)p2() du

: y
+ / ¢ (r—n.2) prw du} (5.110)
that can be solved by doing the Fourier transform,
00 1 ..
PO ) =T +2.—i Y e (5.12)
m=—0o0 m
m#0
1 ...
P =Y gez""*pj (m). (5.120)

meZ

Introducing these expressions in integral equations (§-45.11), we obtain the densities
in the Fourier space

N3 sinh(2y |m|) N3 sinh(y|m])

pr(m) = Zﬁm N sinh@ylmD) (5.131)

R R = (5.13)
whenm # 0, and

01(0) = Z(ZNgi;N‘”’) (5.14)

02(0) = w (5.1%)

for m = 0. We note that foov; = O we have again the known result for a homogeneous
chain. It is interesting to note the complementarity of the solutionNgr= 0 and the
solution for N3 = 0,

p1(m)|ny=0 = P2(m)|nz=0 (5.15)
p2(m)|ny=0 = p1(m)|n;=o0. (5.1%)
In the caseVs; = Nj = N/2, that corresponds to our alternating chain, the densities are
given by

1
coshzmy

p1(m) = pa(m) = (5.16)

coshdmy
The free energy is defined by the expression

. 1
Jim f0.y) =~ 1gA®). (5.17)
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Then, taking the dominant term iR (9),

A4 (0) =[a@)][bO)] [ [ e —0) (5.18)
j=1
the energy is given in this limit by
N3
FO.y) == In@®) - In (b)) + — Zcp( b4 |29 2) (5.19)

Changing the variabla = 30/2 and using equations (5.10), (54)3and (5.13), the
free energy can be written in the clearer form

4 Ny 2Nz X e ™ sinh(2my)
,Y) = —In sin - sinh(2mu) ———=
Sfu,y) (si h(u+y))+3Nu+ N 2 inh( u)smh(3my)
N3 _ 3 2N} 2N; S e sinh(my)
——1n nh — - — nh(2mu) ———.
N (S' <”+2y>>+3 Y ; SN2 )

(5.20)

As we can see, the free energy is the sum of the individual contributions of the sites
in each representation. So, foff = 0 (N3 = 0), we again obtain the results of the
homogeneous case in the representatBjn({3*}).

From the free energy, we can obtain the energy density in the fundamental state,

df 3dy
=—— =—=— . 5.21
dd |,_ 2du|,_o (5-21)
Doing the calculation, the result is
3(N; 4 o~y SINN2my)
2{N[ cotfy + 3+ Ze Slnh(3my):|
N3 3 o sinh(my)
23 —coth( = 4 my 5.22
+ N [ co <2)/) 3’ Z sinh(3my) ( )

that is again the sum of the individual contrlbutlons of each site representations.
We can apply the results to the alternating céSg= N; = N/2); the free energy is

X gy cosh}
£ @, y) = LInsinhu + y)) — 3 In(sinhw + 3y)) + Z © sinWZmu)M
~= cosh(3my)
(5.23)
and the energy density of the fundamental state
3 3 cosh(imy)
gan — = (coth + coth( ) )+ -3) e™ 2 5.24
4 v 27 Z cosh3my) (5-24)

The solutions we have given, were obtained by taklng hyperbolic functions for the
solutions (4.2)—(4.2d) and (4.4)-(4.7d) of the YBE. By considering the trigonometric
solutions of these equations and following the same steps, we find the BA equations,

_sin}“('l)(l) %) r Sinr‘(vl(cl) 1 |]/) Sin}..(v(Z) (l) —ij 2) £ o
sinh(v(l) y) - sinf‘(v(l) (1) i 1_[ @ _ (1) Y (5.2%)
L P j=1 p +1iy) i1 sinh(y, +i%)
— N3
. (2 3 ) ) X )
Slnh( )+|y> rsinhv® — oY —iy) = sinh® — o —i%)
ain @ v = _H PN ) (1) H @ _ @ 47y (5.2%)
sinh(v; i5) j=1 Sinh(y,~ — +iy) ;=1 sinh(y, v i)
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In this regime, the roots cover all real humbérsoo, co). Then, defining an analogous
function

. sinh(x +ia)
O] =iln ———~ 5.26
@) =1 G = i) (526)
we can solve the problem again by using the Fourier transform
o dk | sin(k(3 — o))
D (A = — ko) ———=5——— 5.27
A, @) n+[m . sin(k\) Sinks) ( )
1 +00 i
b= 5o [ dee 0. (5.21)
T J -0
The no-holes hypothesis for the ground state gives us the densities
R N3 sinh(ky) Nz sinh(k%)
prley = —2 >0 T8 220 (5.28)
N sinh(Gky) N sinh(ky)
) N3 sinhkY) N sinh(ky)
palhy = "3 T2y T8 ST (5.26)
N sinh(3ky) N sinh(Gky)
and the free energy becomes
N _ ® dk sinh(ku) sinh(k(Z — ¥)) sinh(k
f(u,y)z?»{_msm(uﬂ)uf dk sinh(ku) sinfik (. 2)3) h y)}
N 0o k sinh(k %) sinh(k %)
iy  dk sinh(ku) sinh(k(Z — %)) sinh(k
+N3{—Insin(u+3)/>+2/ diesinfiku) sinh(k(y 2)3? i y)}.
N 2 o k sinh(k%) sinh(k %)
(5.29)
The density of energy of the ground state is
3[N: © sinhk(%Z — %)) sinh(k
5:—{3[—coty+2/ oSG~ ) 3h( y)}
2( N 0 sinh(k%) sinh(k %)
N; 3 o sinhk(Z — %)) sinhk
x3[—coty+2f dk h( (2 2_)) 3h( y)“. (5.30)
N 2 0 sinh(k%) sinh(k )

We can specify these magnitudes for the alternating ¢Ase= Nj = N/2); they are

f(alt)(u y) = _} Insin(u + y) — } Insin| u + §V
) 2 2 2

o i i T _ Y k
+/ %smh(ku).smh(k(2 Z)lcosruy) (5.31)
o k sinh(k%) coshk )
and
3 3 3 [  sinhk(% — %)) coshk})
5a't=_< ty — t( ))—/ dk 22 4z, 5.32
4\ T Y 2 Jo sinh(k %) coshk %) (>32)

We can describe other quantum numbers of the eigenvectors of the transfer matrix. Let we

define the number operators

Y1=N, — N; (5.3%)
Yo = Ny — N (5.3%)
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where
. N
Ne=)"18 ®1® 1) ®1® @1y (5.34)
i=1
and
1 if 8=a
nelB) = . (5.35)
0 if B#a.
The operatorg; and Y, commute with the transfer matrix
[Y;, 7(6)] =0 i=12 (5.36)
The commutation relations with thR-operators are
[V1, Bi(0)] = —B:(6) (5.37)
[V2, Bi(6)] = 82, B;(6). (5.37)

Then, if we applyY; and Y, on the statel(u), obtained by the application of operators
B to the pseudovacuum stal@) in the first step and operators in the second step, we
find

P () = (N3 = )W () (5.38)

YU (p) = (r —s)¥(p) (5.3%)
we have the quantum numbers of this problem as

N, —Ng=Nz—r (5.3%)

Ny—Nj=r—s (5.3D)
and obviously

Ny —N;=s—Nj; (5.40)

being N, the eigenvalues of, (¢ = u, i, d, d, s, 5).
In the thermodynamic limit the fundamental state is characterized by

r 4 2N3 + N3
(W= [ o =50 (5.41)
s A N3+ 2N3
and then
N, — N; N3 — N}
( N > == (5.42)
N—oo
Ny — N; N3 — N}
(dN> = % (5.42)
N—oo
N, — N; N3 — N3
( 5 > = % (5.4)
N—o00

For N3 = 0 or Nj = 0 we recuperate the no-mixing chain results.
In the alternating chailiNs = N3 = N/2) we obtain

N, — N; Ny — N; N; — N;
( ) = <d d) = ( ) =0. (5.43)
N N—o0 N N—oo N N—o0
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This proves that the fundamental state is formed by pairsr dd or s5.

These methods can be easily generalized to higher representations of su(3); the only
change is in the functions (that we call source functions): they change according to the
highest weight of the representation. The generalization te)da(also straightforward,
but laborious; the MBA will havgn — 1) steps and will be described iy — 1) source
functions, related byn — 1) Bethe equations.
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